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Abstract. We present and discuss results of the application of a deep
convolutional network model developed for the automatic recognition
of images of insects. The network was trained using transfer learning
on an architecture called MobileNet, specifically developed for mobile
applications. To fine tune the model, a grid-search on hyperparameters
space was carried out reaching a final accuracy of 98.39% on 11 classes.
Fine-tuned models were validated using 10-fold cross validation and the
best model was integrated into an Android application for practical use.
We propose solving the “open set” problem through feed-back collected
with the application itself. This work also led to the creation of a well-
structured image dataset of some important species/genera of insects.
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1 Introduction

Insects are the largest class of the animal kingdom in our planet counting over
a million of species. Within this vast taxonomic group of animals we find many
vectors of various pathogens responsible for diseases and zoonosis; some of these
insects infest foodstuffs and stored products, others cause the loss of entire crops
and alter the quality of cultivated products and their derivatives. In order to limit
their impact, a timely intervention is often essential. For this reason, tools that
would allow the immediate classification of specific species of insects are needed.

This problem can be recasted as an image classification task, that is an
instance of supervised learning problems. In classification tasks, we train a model
f : X → Y on a set of labeled data, called training set, composed of pairs
(x, y) where y ∈ Y is the correct label for the instance x ∈ X. A supervised
learning algorithm modifies progressively f(.) to minimize an error, associated
to misclassification and specific for the task so that the correct label y ∈ Y can
be assigned to any input instance of x ∈ X.

Convolutional Neural Networks (CNNs) are kinds of multi-layer neural net-
work architectures specialized in finding patterns within images. They have be-
come the state of the art for image classification since 2012, when AlexNet [12]
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won the ImageNet Large Scale Visual Recognition Competition3 (ILSVRC) beat-
ing others no neural network methods and achieving an error rate of 16.4% on
top-5 [16].

Since then, the enormous strand of learning algorithms working on networks
endowed with many layers (named deep networks) has begun for the solution
of visual recognition tasks. These models obtain remarkable results thanks also
to the increase in GPUs computing power that allows the execution of complex
learning algorithms in reasonable amount of time.

We propose here a particular CNN fine-tuned on a MobileNet [8] architecture,
that was itself pre-trained on ImageNet. MobileNet is an architecture designed
specifically for mobile applications. This architecture was chosen for its simplic-
ity, because it can run on smart phones and for future experiments.

Because there are no specific databases of insects, we built our own dataset,
that counts 13,588 images (belonging to one of 11 classes) and we leveraged this
dataset to train MobileNet. Different hyper-parameters were used. The models
obtained were validated through 10-fold cross validation and the best model was
integrated into an Android application.

Thanks to this application we have been able to propose an operational
transversal solution to an open problem in visual recognition: the “open set”
recognition [19]. This occurs when we have to recognize if an image belongs
to one of the specified classes or it belongs to a different external class. This
information can be collected by the users themselves who take a picture of insects
from their smart-phone, see the current classification proposal of the system with
the associated degree of confidence, and, in case the insect has not been correctly
classified, he/she can report this to the system that can refine, in batches, the
classification output.

Finally, in order to investigate the nature of the features that the network
learnt, we tested our model on a small dataset of insects that do not belong to
the classes identified, including various insects similar to those present in the
dataset on which the network was trained.

2 Related Work

CNNs trained on large datasets such as ImageNet, that include a large num-
ber of images of insects, have already been proved to be capable of classifying
them. However, to the best of our knowledge, there are few existing works [7,
14], specialized in the automatic classification of images of these invertebrates.
Moreover, there are not satisfying works dealing with the “open set” problem,
that for insects that belong to millions of species, is a real issue.

In addition, there was the need to create an accurate and well-structured
dataset targeted to classification of insects of medical and agronomic interest,
taking into account that at certain levels of detail even the taxonomist expert
needs a thorough morphological study for the identification of species.

3 http://www.image-net.org/challenges/LSVRC/
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3 Methodology

3.1 Transfer Learning

Training a neural network from scratch is a difficult task which requires a huge
amount of resources as computational power, lot of data, time, and frequently
leads to overfitting. These kinds of neural networks are also rich in hyperparam-
eters that need to be tuned. To solve these issues we trained our network using
transfer learning [15, 4, 20]. This is a machine learning method that allows the
knowledge transfer between domains; in neural networks knowledge is embed-
ded in the network weights. The idea behind transfer learning on CNNs is that
features learned in the first layers are often the same regardless of the domain.
The more similar are domains, the more are the shared features, the less is the
training needed.

We exploited two aspects of transfer learning: first we trained, on the top of a
MobileNet [8], a Softmax classifier. Such classifier allows interpreting its output
as a degree of similarity of the image with one of the identified 11 classes. Then,
we fine-tuned MobileNet specializing it on the features of insects of our interest.

3.2 MobileNet

We chose the MobileNet architecture because it was designed for mobile devel-
opment. In particular, it can do the forward pass on client side. Furthermore, its
simplicity makes it a good candidate for future experiments and developments.

MobileNet is a 28 layers CNN that uses depth-wise separable convolutional
layers instead of classical convolutional layers. Depth-wise separable convolution
operation splits the convolution operation in two phases: first, the input is fil-
tered in a depth-wise convolutional layer, then the output of the first phase is
combined in a separate point-wise convolutional layer. In classical convolution
these two steps are merged into one. This split reduces the number of oper-
ations required for the convolution without degradates performances. This is
particularly suitable to RGB images where convolution can be computed sepa-
rately on the three different channels. For more details on depth-wise separable
convolution we refer to the original paper [8].

The first layer of the net is a classic convolutional layer, then there are 26
layers alterning depth-wise convolution and point-wise convolution. Between a
convolution operation and another one, there is a batch normalization operation
followed by a ReLU6 activation function The ReLU 6 is a variant of the classical
ReLU which makes the network more robust than regular ReLU when using
low-precision computation [11].

The last layer of the network is a fully connected layer preceded by a global
average pooling operation. The final classification is made by a Softmax classifier.
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4 Training

4.1 Dataset

There are a lot of challenges that any algorithm of image classification has to
face off including: image occlusion, illumination conditions, image deformation,
viewpoint variation, scale variation, intra-class variation, background clutter and
so on. In supervised learning we try to address these issues through a data-
driven approach. To correctly address such problems, the dataset on which the
algorithm learns should be as various as possible and cover all possible variants.

Our dataset is composed of 11 classes. Each class counts a mean of 1000
images (except one that was not present in the laboratory when the dataset was
created) for a total amount of 13,588 images. We collected all images for insects
of our interest from Google Images through a script, and then we cleaned the
results by hand. We integrated these images with photos took in the laboratory
(Figure 1). The classes included into the dataset are the following: Brachinus
sp., Chrysolina sp., Chrysomela sp., Cucujus sp., Graphosoma sp., Cucujus sp.,
Leptinotarsa decemlineata, Nezara viridula, Pyrochroa sp., Rhynchophorus fer-
rugineus, Vespa crabro, Vespula sp. The classes were chosen because they are
dangerous to agriculture, dangerous to other animal and plant species or simply
because they are common.

The dataset was splitted, in a random but reproducible way4, into training
set and test set using 90% and 10% of images for each class, respectively.

Fig. 1. Number of examples within the classes.

4 https://cs230.stanford.edu/blog/split/
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4.2 Training Settings

In order to train our network we leveraged Keras5 with TensorFlow6 as back-end.
Keras is an open-source, high level library, written in Python, for deep learning.
It provides several models. We focused on CNN models pre-trained on ImageNet.
In particular, we leveraged the MobileNet architecture described above.

In order to achieve the best accuracy, we set the multiplier width and reso-
lution to 1. We used the cross entropy function as loss function that is the best
choice using Softmax classifiers.

The dataset was constructed in such a way that the number of examples
within the classes is balanced (Figure 1). Moreover, given the nature of the
problem, we used the accuracy as metric to evaluate the results.

Every training run ends with early stopping, 10% of training set images for
each class was used to build the validation set. We monitored the loss on the
validation set and stopped the training process after 4 epochs that the loss did
not decrease anymore.

Models were trained and validated on a NVIDIA GeForce GTX 950M.

4.3 MobileNet as Features Extractor

The network was trained using transfer learning method. As first step of our
training, we exploited the MobileNet CNN pre-trained on ImageNet as features
extractor. We replaced the last layer of MobileNet provided by Keras with our
11 outputs Softmax classifier. As previously mentioned, in ImageNet there are a
lot of images of insects, so we can reasonably suppose that the already learned
features could guarantee good results already at this step.

We froze all the weights of the network and did a grid-search for tuning
hyper-parameters in the following space:

learning rate: {log10b = c}, c ∈ {−6, ...,−1}
batch size: {2a}, a ∈ {3, ..., 6}

optimizers: {Adam,RMSProp}

Because the learning rate is a multiplier, it is usually searched in logarithmic
space, while the batch size is commonly set as power of 2 for efficient com-
putation. We adopted two optimizers here: Adam algorithm [10] is one of the
best choice to optimize the gradient descent in CNNs and RMSprop [3] is the
optimizer used in the original MobileNet paper. The hyper-parameters of the
optimizers are the default ones suggested by Keras.

Let’s introduce the tuple (optimizer, learningrate, batchsize) to define a con-
figuration of hyperparameters. Table 4.3 shows results about the two best models
calculated on the training and validation set. The best hyper-parameters config-
urations are: (Adam, 10−4, 23) and (RMSProp, 10−4, 24). Training results are
interesting already in this phase. The best results are obtained with batch sizes

5 https://keras.io/
6 https://www.tensorflow.org/
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in {23, 24} and with learning rate in {10−5, 10−4, 10−3}. Learning rate of 10−1

was too high, whereas a learning rate of 10−6 was too slow in convergence. The
grid-search took about 3 days.

Table 1. Training results of the Softmax classifier on training and validation set.

Configuration Epochs Training Set Validation Set

Loss Accuracy Loss Accuracy
(Adam, 10−4, 23) 5 0.0599 0.9842 0.0908 0.9737

(RMSProp, 10−4, 24) 10 0.0081 0.9982 0.1066 0.9742

4.4 MobileNet: Fine Tuning

In this phase we fine-tuned the best models obtained in the previous step leaving
the weights of the network free to vary. In such way, the network can learn
features for the classification of the insects specific of this application. Since we
have a fairly large dataset we fine-tuned all the layers of MobileNet.

Results of the previous phase suggested us to use a small batch size and a
small learning rate. We searched hyper-parameters through grid-search in the
following space:

learning rate: {log10b = c}, c ∈ {−6, ...,−3}
batch size: {2a}, a ∈ {3, 4, 5}

optimizers: {Adam,RMSProp}

The best configuration are (Adam, 10−5, 23) and (RMSProp, 10−4, 23) both
of them obtained from the fine tuning of (Adam, 10−4, 23). Results about the
two best models calculated on the training and validation set are presented in
Table 4.4. The grid-search on both models took about three and a half days.

Table 2. Results of the fine tuning on training and validation set.

Configuration Epochs Training Set Validation Set

Loss Accuracy Loss Accuracy
(Adam, 10−5, 23) 13 0.0041 0.9995 0.0448 0.9845

(RMSProp, 10−4, 23) 7 5.2790e-04 0.9997 0.0460 0.9860

5 Validation

We validated the two models obtained from fine tuning phase through 10-fold
cross validation. 10 blocks of images were randomly extracted from the initial
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training set. The blocks are composed of 1/10 of the total images for each class.
These blocks were used in turn as a validation set using each time the 9/10 of
the remaining images as training sets.

The cross validation error of (Adam, 10−5, 23), obtained by averaging the
single validation loss for each run, is 0.0093, whereas the cross validation er-
ror of (RMSProp, 10−4, 23) is 0.0177. Therefore, the best model is obtained by
fine tuning (Adam, 10−4, 23) (i.e. the model obtained by training only the Soft-
max classifier from the first phase) with hyper-parameters (Adam, 10−5, 23). The
cross-validation on both models took about one day.

6 Results and Discussion

The model proposed here is based on stacking convolutional layers one on top of
the other, adding eventually a pooling layer in between. Although convolutional
neural networks have been popularized inside the deep-learning domain, they
were proposed in the early nineties by the group of Slotine [18] in the domain of
radial basis function networks and further developed inside a hierarchical frame-
work with real-time learning by the group of Borghese [5, 6, 2]. Similar concepts
are also well-known in the mathematical domain where functional approximation
through function bases is largely adopted.

The accuracy calculated on the test set with the best model is 98.39%. This
should not come as a surprise given the large number of parameters implemented
by such networks. The particular nature of the task and the fact of having built
a custom dataset does not allow us to compare results with any existing work.

We know that as the number of classes increases, the accuracy of the net-
work may deteriorate. However, there are many solutions that we could adopt.
We could change the network architecture: MobileNet belongs to the first gen-
eration of “mobile CNNs” as well as ShuffleNet [22]. We could leverage more
sophisticated networks like MobileNet V2 [17] or ShuffleNet V2 [13]. We could
use the “Squeeze-and-Excitation” (SE) blocks in our MobileNet, introduced in
SENet [9] that is the winner of the task of image classification of ILSVRC 2017.

In all cases, the claim would be that the numerosity of the dataset should be
increased to improve the recognition rate. This is a mantra of all deep-learning
algorithms and it resembles the mantra of classical Artificial Intelligence, for
which any artificial intelligence would approach human intelligence provided
that as complex enough local function is implemented inside it. We remark that
some peculiar characteristics of human brain and reasoning are missing in these
pictures.

6.1 Application

The classification network was integrated into an Android application (Figure
2) to field test the model and for practical use. It allows loading a picture from
the phone’s memory or take a picture on the spot. Once the image is chosen, in
order to get a better classification, the application allows selecting the portion
that contains the insect.
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Fig. 2. Screenshot of the application,
example of classification.

Results of the classification are pre-
sented displaying the thumbnail prototyp-
ical image of each class and the proba-
bility value associated. This would tackle
also the problem of “open set” recogni-
tion: what would happen if we try to
classify an insect that is not part of the
dataset? The model, due to the nature of
the classification task, would give a result
based on the most similar matching be-
tween the image and the features that the
network learnt.

There are two possible cases: the insect
is not into the dataset or the image is mis-
classified. In both cases, we will provide a
feedback mechanism with which the user
can send a report containing the image
and a top-5/top-10 of the results. In this
way if the insect is not into the dataset,
we could decide to insert it. Otherwise, if
the algorithm misclassifies the image, we
will have the opportunity to investigate
why the image was not correctly classified
and to integrate the dataset with different
images for a future training. Therefore, we
can say that the thumbnail provides a self-
evaluation mechanism for the user and allows increasing the size of the database
with annotated images easily.

6.2 Test on the features

Neural networks, particularly CNNs, are a sort of black box. While first layer
features are human readable, those of deeper levels are hard to understand. Some
efforts have been done to try to understand how CNNs work internally, and it
is catalogue under “open deep-neural network” research stream [21]. However,
no results are provided up to now on internal codes used by such networks. This
shortcoming is shared with classical neural networks for which the output of
hidden layers was almost never explored with a few remarkable exception (e.g.
[23]). We remark here that, given the large number of parameters in the network,
the same results can be obtained with different outputs of the hidden layers [1]
and it is not clear yet if there is any hidden output that is biologically plausible,
contains a certain code and it is common across different peoples brain, or hidden
output can vary largely from individual to individual.

We classified 19 external classes of images that were similar to those into the
training set. Results were predictable: the network looks for shape/color match-
ings between taining and external classes (Figure 3). The external classes are
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Fig. 3. On the left a training class (Cucujus sp.), on the right an external class (Pedi-
acus depressus) mostly classified as Cucujus sp. because of its shape.

the following: Adalia bipunctata, Aelia acuminate, Anchomenus dorsalis, Car-
pocoris pudicus, Corizus hyoscyami, Curculionidae, Dolichovespula sp., Eury-
gaster maura, Leistus (Pogonophorus), Lema daturaphila, Lilioceris sp., Nebria
(Eunebria) sp., Pediacus depressus, Polistes sp., Pyrochroidae, Sulcopolistes sp.,
Tenthredo notha, Tenthredo scrophulariae, Vespa orientalis (cf. Figure 3). Fur-
ther investigation are needed in order to derive some insights on the features
that the network learnt.

7 Conclusions

We built a custom dataset of images of insects on which we fine-tuned a mobile
CNN: MobileNet. The best models from fine tuning phase were validated through
10-fold cross validation and the one with less cross validation error was tested on
the test set obtaining 98.39% of accuracy. Finally, the network were integrated
into an Android application. We have tried to give a transversal contribution
to the open problem of “open set” recognition. We tried to classify a dataset
composed of 19 external classes similar to those present into the training set in
order to investigate the black box infrastructure of CNNs.
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